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ABSTRACT

Enrichment analysis is a popular method for ana-
lyzing gene sets generated by genome-wide experi-
ments. Here we present a significant update to one of
the tools in this domain called Enrichr. Enrichr cur-
rently contains a large collection of diverse gene set
libraries available for analysis and download. In total,
Enrichr currently contains 180 184 annotated gene
sets from 102 gene set libraries. New features have
been added to Enrichr including the ability to sub-
mit fuzzy sets, upload BED files, improved applica-
tion programming interface and visualization of the
results as clustergrams. Overall, Enrichr is a compre-
hensive resource for curated gene sets and a search
engine that accumulates biological knowledge for
further biological discoveries. Enrichr is freely avail-
able at: http://amp.pharm.mssm.edu/Enrichr.

INTRODUCTION

The Gene Ontology (GO), which was first published in
the year 2000 (1), introduced the concept of associating a
collection of genes with a functional biological term in a
systematic way. GO was needed because methods such as
cDNA microarrays that measure mRNA expression at a
global genome-wide scale produce lists of differentially ex-
pressed genes that are difficult to interpret. The creation
of GO enabled the analysis of gene lists in the context of
prior knowledge. Early tools such as FatiGO (2), BiNGO
(3) and TermFinder (4) first realized this concept. Initially,
most enrichment analyses of sets of differentially expressed
genes, integrated with prior knowledge, were limited to ei-
ther GO terms, or gene sets were projected onto known
protein–protein interaction networks and signaling path-

ways. These include, for example, membership of genes
in pathway databases such as the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (5). Later on, other types of
annotated gene sets for enrichment analysis emerged; for ex-
ample, chromosome location of genes, computationally pre-
dicted targets of microRNAs and transcription factors, and
gene modules identified computationally from large collec-
tions of gene expression data (6). Subsequently, improved
enrichment analysis algorithms (7,8) and enrichment anal-
ysis tools (9–13) emerged. Here we present a major update
to the enrichment analysis tool Enrichr, which was first pub-
lished in 2013. Since its initial publication, we added many
new features and data sets to Enrichr. The new gene set
libraries that were added include differentially expressed
genes after drug, gene, disease and pathogen perturbations
extracted from the national center for biotechnology infor-
mation (NCBI) gene expression omnibus (GEO) through a
crowdsourcing project. Furthermore, we have implemented
the ability to submit fuzzy sets, upload BED files, a calen-
dar that shows the number of lists submitted each day, an
improved application programming interface (API), an en-
hanced help documentation, an improved Find a Gene fea-
ture, and visualization of the results as clustergrams. In this
manuscript, we also provide updated benchmarking results
of the different scoring schemes implemented in Enrichr
and visualize the overlap between the data sets currently
within Enrichr compared with other comparable web-server
tools and resources that serve gene set libraries.

ENHANCEMENTS AND UPDATES

New gene set libraries

Since the original publication of Enrichr in 2013 (14), we
have systematically added new gene set libraries (Table
1). We created gene set libraries from HumanCyc (15), a
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metabolic pathway resource stored in BioPAX format (16);
gene and small-molecule perturbations from the LINCS
L1000 data set; NCI-Nature pathways (17); protein com-
plexes from the NURSA project (18); pathways from the
PANTHER resource (19); targets of phosphatases from
DEPOD (20); human phenotypes from the Human Pheno-
type Ontology (HPO) (21); genes associated with grants us-
ing NIH RePORTER and GeneRIF (22); transcription fac-
tor targets computed from the ChIP-seq data from the EN-
CODE project (23); differentially expressed genes from the
Allen Brain Atlas (24); tissue expression extracted from the
Genotype-Tissue Expression (GTEx) project (25); protein
expression in tissues and cell types from ProteomicsDB (26)
and the Human Proteome Map (HPM) (27); genes associ-
ated with cell survival from the Achilles Project (28); and
more. More details about constructing these new libraries
are available as supporting online materials. These libraries
are open source, freely available for download from the li-
braries page of Enrichr. In the updated version of Enrichr,
we added a new category of gene set libraries called ‘Crowd’.
These libraries were created by an independent crowdsourc-
ing project where participants extracted gene expression sig-
natures for six specific themes as described below.

Differentially expressed genes after drug, gene, disease, lig-
and and pathogen perturbations extracted from GEO by the
crowd. To extract gene sets from gene expression data de-
posited in the GEO (29), we established a crowdsourcing
microtask project that asks participants to extract gene
sets from GEO for the following categories: (1) single-gene
perturbations in mammalian cells; (2) comparison of dis-
eased versus normal tissues; (3) single-drug perturbations
in mammalian cells; (4) perturbations applied to MCF7
cells; (5) comparison between young and old mammalian
tissues; (6) endogenous ligand perturbations of mammalian
cells; and (7) comparison of before and after pathogen in-
fection of human cells. Participants of the microtasks were
recruited via two Coursera massive online open courses
(MOOCs) and worked voluntarily on finding relevant stud-
ies from the GEO database. Participants were instructed
to identify control and perturbation samples (GSM files),
and to add additional metadata such as cell-line/tissue
used in each study, as well as IDs for genes, diseases and
small molecules. Participants were also instructed to use
the browser extension GEO2Enrichr (30) to extract differ-
entially expressed gene sets from GEO. The metadata and
gene sets were submitted to our crowdsourcing database
and then converted to gene set libraries for Enrichr.

To ensure the quality of these crowd-generated gene set li-
braries, we performed both automatic and manual sanitiza-
tions. We first programmatically re-processed all the entries
submitted by the participants to calculate differentially ex-
pressed gene sets using the metadata submitted by the par-
ticipants using the Characteristic Direction method (31).
Incorrect entries where samples did not belong to the par-
ticular study were automatically filtered. We also automati-
cally filtered out entries with invalid gene symbols and mis-
matched organisms. Entries from curators who submitted
more than 10% invalid entries were removed entirely. En-
tries that passed these filters were randomly sampled for
manual inspection to ensure that the metadata, such as the

perturbed genes, were in fact perturbed in the study, and
control samples and perturbation samples were correctly se-
lected. As a result, approximately 20% of the submitted en-
tries were removed for each microtask.

In addition, to encourage Enrichr users to contribute
their own lists to the crowd category, we added a checkbox
on the submission page that enables user-submitted lists to
be added to a collection that can then be searched by other
users. The default settings of the checkbox are unchecked
to avoid users exposing their lists by accident. So far, ∼600
lists were contributed by users of Enrichr. In the future, we
plan to make these contributed lists available for search by
the community.

Benchmarking enrichment methods

To benchmark the performance of the various enrichment
analysis methods implemented within Enrichr, namely, the
proportion test, the Z-score and the combined score, as
well as other similar published methods, for example, the
over representation analysis (ORA) method (11), as well as
simple methods such as the Jaccard distance or the num-
ber of overlapping genes, we processed 489 experiments
that genetically perturbed (knockdown, knockout or over-
expression) transcript factors (TFs) from 293 studies avail-
able from GEO. We identified the differentially expressed
genes from these studies using the Characteristic Direction
(CD) method (31). We then performed enrichment analy-
sis against the ChIP-X enrichment analysis (ChEA) gene
set library, ranking TFs with the different scoring methods
(32). The hypothesis behind this benchmarking idea is that
genes that are differentially expressed after genetic pertur-
bations of a TF are enriched for the targets of the TF as de-
termined by ChIP-seq regardless of cell type, mammalian
organism or microarray platform. We then find the ranks
of the perturbed TFs for each enrichment analysis scoring
methods and plot their cumulative distributions. Our results
demonstrate that the combined score and the Z-score meth-
ods recover more of the ‘correct’ terms compared with the
other methods we tested (Figure 1A). This result is consis-
tent with our results from 2013, presented in the original
Enrichr publication.

Fuzzy enrichment analysis

A fuzzy set is composed of a pair {S, m}, where S is a set
and m is a membership function defined over the members
of the set: m : S → [0, 1]. For each x ∈ S, the value m(x) is
the grade of membership of x, such that if m(x) = 0 then x
is termed ‘not in the set’ and if m(x) = 1 then x is termed
‘completely in the set’, and intermediate values of x are con-
sidered to have intermediate fuzzy membership. In these
terms, the simple gene sets referred to above are called ‘crisp
sets’ because all the genes in these sets have a membership
value of 1. Another common representation for fuzzy sets
is

{m(x1)/x1 , m(x2)/x2, . . . }
To perform enrichment analysis with fuzzy sets, we re-

quire the fuzzy equivalent of set intersection. For the fuzzy
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Table 1. Details of the new gene set libraries added to Enrichr since its original publication

Gene set library Terms
Gene
coverage

Mean genes per
term Source PMID

Achilles fitness decrease 216 4271 128 http://www.broadinstitute.org/achilles 25984343
Achilles fitness increase 216 4320 129 http://www.broadinstitute.org/achilles 25984343
Allen Brain Atlas down 2192 13 877 304 http://www.brain-map.org/ 23193282
Allen Brain Atlas up 2192 13 121 305 http://www.brain-map.org/ 23193282
BioCarta 2015 239 1678 21 http://pid.nci.nih.gov/download.shtml
ChEA 2015 395 48 230 1429 http://amp.pharm.mssm.edu/lib/chea.jsp 20709693
dbGaP 345 5613 36 http://www.ncbi.nlm.nih.gov/gap 24297256
Disease Perturbations from GEO down 839 23 939 293 http://www.ncbi.nlm.nih.gov/geo/ 23193258
Disease Perturbations from GEO up 839 23 561 307 http://www.ncbi.nlm.nih.gov/geo/ 23193258
Drug Perturbations from GEO down 906 23 877 302 http://www.ncbi.nlm.nih.gov/geo/ 23193258
Drug Perturbations from GEO up 906 24 350 299 http://www.ncbi.nlm.nih.gov/geo/ 23193258
ENCODE Histone Modifications 2015 412 29 065 2123 http://genome.ucsc.edu/ENCODE 26527727
ENCODE TF ChIP-seq 2015 816 26 382 1811 http://genome.ucsc.edu/ENCODE 26527727
Roadmap Epigenomics HM ChIP-seq 383 22 288 4368 http://www.roadmapepigenomics.org/ 22690667
Genes Associated with NIH Grants 32876 15 886 9 http://exporter.nih.gov 25355515
GO Biological Process 2015 5192 14 264 58 http://www.geneontology.org 25428369
GO Cellular Component 2015 641 13 236 82 http://www.geneontology.org 25428369
GO Molecular Function 2015 1136 12 753 57 http://www.geneontology.org 25428369
GTEx Tissue Sample Gene Expression Profiles down 2918 16 725 1443 http://www.gtexportal.org/ 25954001
GTEx Tissue Sample Gene Expression Profiles up 2918 19 249 1443 http://www.gtexportal.org/ 25954001
HomoloGene 12 19 129 1594 http://www.ncbi.nlm.nih.gov/homologene
Human Phenotype Ontology 1779 3096 31 http://www.human-phenotype-ontology.org/ 24217912
HumanCyc 125 756 12 http://humancyc.org/ 15642094
KEA 2015 428 3102 25 http://amp.pharm.mssm.edu/lib/kea.jsp 19176546
KEGG 2015 179 3800 48 http://www.kegg.jp/kegg/download/ 24214961
Kinase Perturbations from GEO 37 25 858 2081 http://www.ncbi.nlm.nih.gov/geo/ 23193258
Kinase Perturbations from L1000 49 12 441 4052 http://www.lincscloud.org/
LINCS L1000 chem pert down 33132 9448 63 http://www.lincscloud.org/
LINCS L1000 chem pert up 33132 9559 73 http://www.lincscloud.org/
MGI Mammalian Phenotype Level 3 71 10 406 715 http://www.informatics.jax.org/ 18981050
MGI Mammalian Phenotype Level 4 476 10 493 200 http://www.informatics.jax.org/ 18981050
NCI-Nature 209 2541 39 http://pid.nci.nih.gov/ 18832364
NURSA Human Endogenous Complexome 1796 10 231 158 https://www.nursa.org 21620140
Panther 104 1918 39 http://www.pantherdb.org/ 23193289
Phosphatase Substrates from DEPOD 59 280 9 http://www.koehn.embl.de/depod/ 25332398
Reactome 2015 1389 6768 47 http://www.reactome.org/download 24243840
Single Gene Perturbations from GEO down 2460 30 832 302 http://www.ncbi.nlm.nih.gov/geo/ 23193258
Single Gene Perturbations from GEO up 2460 31 132 298 http://www.ncbi.nlm.nih.gov/geo/ 23193258
TargetScan microRNA 222 7504 155 http://www.targetscan.org 26267216
TF-LOF Expression from GEO 269 34 061 641 http://www.ncbi.nlm.nih.gov/geo/ 23193258
Tissue Protein Expression from Human Proteome Map 30 6454 301 http://www.humanproteomemap.org 24870542
Tissue Protein Expression from ProteomicsDB 207 13 572 301 https://www.proteomicsdb.org/ 24870543
Transcription Factor PPIs 290 6002 77
Virus Perturbations from GEO down 323 17 576 300 http://www.ncbi.nlm.nih.gov/geo/ 23193258
Virus Perturbations from GEO up 323 17 711 300 http://www.ncbi.nlm.nih.gov/geo/ 23193258
WikiPathways 2015 404 5863 51 http://www.wikipathways.org 26481357

PMID stands for PubMed identifiers.

sets {S, ma} and {S, mb}, this is defined such that

{S, ma} ∩ {S, mb} =
{Min (ma(x1), mb(x1)) /x1, Min (ma(x2), mb(x2)) /x2, ... }

In addition, we need the cardinality of a fuzzy set which
is defined as the sum of the grades of membership of each
element,

|S| =
∑
x∈S

m(x).

The fuzzy P-value enrichment score can be calculated by
decomposing the null distribution into two parts; firstly we
denote by Z the number of non-zero grades of member-
ship in the fuzzy intersection between two null fuzzy sets:
{S, ma, null} ∩ {S, mb, null}. Then Z is a random variable
that is distributed by the hypergeometric distribution:

P(Z = z) =

(
Na
z

) ( |S| − Na
Nb − z

)
( |S|

Nb

)

While intuitively fuzzy enrichment analysis should be
more accurate than ‘crisp’ enrichment analysis, because
‘fuzzy’ enrichment considers the ranks and magnitude of
genes in both the input set and the library sets, our initial
results so far only show a marginal enhancement, utilizing
the same TF-centered benchmark presented above (Figure
1B). In the future, we plan to further explore ways to im-
prove the performance of the fuzzy set enrichment analysis
idea. It is also important to note that with the fuzzy set en-
richment analysis, the scaling method used to convert typ-
ical values that represent, for example, level of differential
expression, into membership values between 0 and 1 is im-
portant. Overall effective use of fuzzy enrichment analysis
requires advanced computational expertise. However, in the
near future, we plan to make such transformations easier
and more transparent.

Uploading BED files

The introduction of ChIP-seq and ChIP-chip technologies
enables the detection of de novo transcription factor binding
sites and changes in histone modifications in mammalian
genomes. Efforts such as the ENCODE project supply a
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Figure 1. Benchmarking different enrichment analysis methods. (A) Devi-
ation of the cumulative distribution from uniform of the scaled ranks of
TFs derived from different enrichment analysis methods; (B) Comparison
between crisp and fuzzy version of the proportion test. The ranking dis-
tribution of randomly ordered ChEA terms is plotted in gray dashed line.
The area under the curve (AUC) is indicated in the legend as a measure of
the degree of deviation from uniform.

large compendium of this type of data. To identify the ex-
act location of protein-DNA binding, genomic regions with
statistically enriched reads, called peaks, are detected. The
final step in such analyses is to associate peaks with genes.
The updated version of Enrichr features similar function-
ality developed for the popular tool Genomic Regions En-
richment of Annotations Tool (GREAT) (33) by allowing
users to upload BED files describing genomics region peaks.
A Java module in Enrichr maps the chromosome coordi-
nates listed in input BED files to their nearest coding mouse
or human genes. User options allow the specification of
whether the input is for human or mouse, and the number of
genes to return based on distance to the transcription start
site (TSS). The identified nearest genes are automatically
uploaded to Enrichr for enrichment analysis. Enrichr now
has a new button that enables users to view, cut and paste
the uploaded lists. This feature can be used to analyze the
nearest genes from any input BED file containing peaks us-
ing other tools.

Visualization of the results with clustergrams

One of the new features of Enrichr is the visualiza-
tion of the enrichment results as clustergrams. This
is achieved using Clustergrammer (https://github.com/
MaayanLab/clustergrammer), an independent data visual-
ization module we developed for multiple projects. Cluster-
grammer provides dynamic visualizations of Enrichr’s en-
richment analysis results. It enables a user to visualize the
associations between their input genes and the overlapping
genes of the top enriched terms. Clustergrammer visualizes
these associations using a heat map in which the columns
are the top enriched terms, and the rows are the input genes.
The cells in the heat map indicate whether a gene from the
input list overlaps with genes that belong to an enriched
term. The enriched terms in the columns of the heat map
are ranked based on their enrichment score. This score is
indicated by the length of a transparent red bar that is dis-
played above the column labels. The input genes are hierar-
chically clustered based on their associations with the top
enriched terms. Clustering is calculated using the Jaccard
distance and average linkage. The heat map is interactive;
a user can zoom and pan using scroll and drag functions.
The rows and columns can be toggled between different or-
derings. The heat map can be re-ordered based on a single
row or column by double-clicking on a label. The matrix is
initialized to show the top 20 input genes that are associ-
ated with the top 10 enriched terms; however, these can be
adjusted with sliders. This slider can be used to show more
of the user’s input genes. Users can search for an input gene
using a search box to identify a gene of interest if the heat
map contains many rows. Users can also save an image of
the clustergram using the camera icon, or share the inter-
active visualization using the permanent link available by
clicking the share icon.

Deployment with Docker, Mesos and Marathon

The Enrichr hosting and deployment process has changed
drastically since its original publication. To account for the
increased traffic through both Enrichr’s web interface and
API, the application and its dependencies are now pack-
aged into a Docker container (34) running the Debian 8.0
operating system with Java 8 installed. Once packaged, the
Docker container is deployed onto a 16-node cluster man-
aged using Apache Mesos (35). To maximize uptime, Meso-
sphere’s Marathon software is used on top of Apache Mesos
as a cluster-wide initialization and control system (36). The
Marathon software automatically controls restarting En-
richr and moving resources across cluster nodes.

Libraries management

One of the challenges related to enrichment analysis tools
such as Enrichr is provenance: the ability to repeat enrich-
ment results, even after libraries and computational meth-
ods for computing enrichment have been updated. To ad-
dress this issue, we created a ‘Legacy’ category in which we
place older libraries so that these can be accessed by users
who wish to repeat their own results, or repeat a published
result conducted by others. The Legacy category has gene
set libraries with a year label. We plan to update libraries

https://github.com/MaayanLab/clustergrammer
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Figure 2. Statistics of Enrichr. (A) Histogram of gene lists submitted per user. (B) Histogram of uploaded list lengths. (C) Histogram of appearance of
genes in uploaded list. (D) Histogram of annotated gene set sizes within Enrichr.

once a year to balance consistency of results with timely
content. Initially, the gene set libraries of Enrichr were not
made available for download. Since 2015, we have made all
libraries accessible for direct download. This enables other
computational biologists to explore the deep relationships
between genes in annotated gene sets, and to develop new
tools using these libraries.

Overview of Enrichr statistics

Enrichr currently contains 102 gene set libraries belonging
to eight categories. In total, there are currently 180 184 an-
notated gene sets within Enrichr. So far, 1 050 236 gene
sets have been uploaded for analysis with Enrichr. While
most (∼65%) users submit only 1–3 lists to Enrichr, there
are also many heavy users where the distribution of lists
submitted per user fits a well-behaved power law (Figure
2A). The submitted lists’ size also follows a power-law dis-
tribution, but contains a peak around ∼250 genes per list
(Figure 2B). This peak is likely an artifact from submis-
sions that arrive from the tool GEO2Enrichr, which has a
default setting of posting the top 500 genes separated into
up-regulated or down-regulated genes from signatures pro-
cessed from GEO. Examining the occurrence of individual
genes in a submitted gene sets, we observe a log-normal dis-
tribution (Figure 2C) with the most popular genes: EGR1,
FOS, TXNIP, DDIT4 and SGK1. EGR1 and FOS are

well-known immediate early genes (IEG), and their high
presence likely confirms that these genes are most com-
monly found as differentially expressed. The appearance of
TXNIP, DDIT4 and SGK1 as common genes is interesting
since these genes have a lesser-known role to be most re-
sponsive. The identification of the common occurrence of
genes in submitted lists and annotated gene sets can poten-
tially be applied to correct for biases, and as a result improve
knowledge extraction. More extensive analysis of gene oc-
currence and co-occurrence in submitted lists demonstrates
that such collective knowledge can be used to discover gene
functions and predict protein interactions (37). Finally, we
plot the distribution of the lengths of the 180 184 annotated
gene sets provided for search by Enrichr (Figure 2D). Over-
all, this distribution also fits a power law with few inflections
that likely represent specific libraries with hard cut-offs for
gene sets. It is still an open question what are the recommen-
dations for optimal enrichment analysis when it comes to
setting thresholds for gene set lengths. This is likely because
the answer is context dependent, but more investigation can
be done with appropriate benchmarks.
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COMPARISON TO OTHER SIMILAR TOOLS

Comparing libraries and resources in other tools

Next we aim to compare the resources and libraries offered
for search by Enrichr with other similar tools. For this, we
compared Enrichr with GO-Elite (38) and MSigDB (6), two
leading resources that contain a comprehensive collection
of gene set libraries. We summarized all the sources of gene
set libraries for the three resources and plotted a Venn dia-
gram to show the overlap among these resources (Figure
3A). Enrichr contains a large portion of MSigDB but is
more comprehensive than both resources. MSigDB (6) con-
tains eight collections of gene set libraries, two of which are
also included in Enrichr (Computational and Oncogenic
signatures). Many of the other collections of gene set li-
braries in MSigDB share the same sources with other gene
set libraries currently present in Enrichr. These include, for
example, the GO, pathway databases such as KEGG, Bio-
carta and Reactome, microRNAs/gene targets and gene
sets created from position weight matrices. In addition, we
note that MSigDB contains chemical and genetic perturba-
tion gene sets manually curated from supporting materials
of publications, whereas Enrichr contains differentially ex-
pressed genes after chemical and genetic perturbation cu-
rated from GEO. We compared the GEO data sets covered
by Enrichr and MSigDB and found that there is some over-
lap while Enrichr has coverage of more data sets (Figure
3B).

User interface pros and cons

There are many other gene set enrichment analysis tools
that could be compared with Enrichr; for example, some
leading tools are Fidea (39), DAVID (13), WebGestalt (12),
g:Profiler (12) and GSEA (40). The advantages of Enrichr
over some of these tools are its comprehensiveness, ease
of use and interactive visualization of the results. Enrichr
is lacking some of the flexibility available with those other
tools. For example, Enrichr merges human, mouse and rat
genes, which has advantages and disadvantages. Enrichr
does not have an ID conversion tool, which is highly de-
sired by many users. Enrichr also does not have the ability
to upload a background list, and it does not have imple-
mentation of parametric tests such as Gene Set Enrichment
Analysis (GSEA) (40), Parametric Analysis of Gene set En-
richment (PAGE) (9), and our own Principal Angle Enrich-
ment Analysis (PAEA) (41). These features are planned.

FUTURE DIRECTIONS

As more genomics, transcriptomics and proteomics data ac-
cumulate, we plan to continue adding to Enrichr new gene
set libraries. We also plan to continually improve the visual-
ization of the enrichment results. It might be useful for users
to view results across libraries, and to have a report of the
most interesting enrichment results across all libraries. En-
richr currently supports only input from mammalian genes;
in the future, we plan to add versions of Enrichr for yeast,
worm and fly. The collection of terms for genes can be used
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to identify similarity between genes across resources, and
this will improve the Find a Gene feature by suggesting
similar genes. By examining the lists submitted to Enrichr,
we noticed that approximately 10% of the submitted lists
do not contain valid gene names. Users submit probe IDs,
protein IDs, genes from other organisms, complete tables
from spreadsheets with special characters, and other non-
standard genes names. To accommodate these users, En-
richr needs to provide methods to convert these inputs into
usable gene sets. The enrichment analysis concept can be ex-
panded into new directions. For example, drug-set enrich-
ment analysis (42) can be used to identify common func-
tions for collections of drugs. In addition, enrichment anal-
ysis tools are increasingly becoming network-aware. The
edge set enrichment analysis (43) method is one example of
how network information can be incorporated into enrich-
ment analysis. The collective analysis of the over one million
gene sets submitted to Enrichr can be viewed as a potential
resource for biological discovery. Each list can be classified
into an attractor of similar lists and classified by methods
of data acquisition but also biological regulatory layers, i.e.
mRNA/proteins/SNPs, as well as biological roles. While we
are committed to keeping user lists completely private, we
also aim to explore the collective knowledge that is accumu-
lating from all user submissions to Enrichr (37).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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